Fat Hoffman graphs with smallest eigenvalue greater than -3

نویسندگان

  • Akihiro Munemasa
  • Yoshio Sano
  • Tetsuji Taniguchi
چکیده

In this paper, we give a combinatorial characterization of the special graphs of fat Hoffman graphs containing K1,2 with smallest eigenvalue greater than −3, where K1,2 is the Hoffman graph having one slim vertex and two fat vertices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fat Hoffman graphs with smallest eigenvalue at least $-1-τ$

In this paper, we show that all fat Hoffman graphs with smallest eigenvalue at least −1−τ , where τ is the golden ratio, can be described by a finite set of fat (−1 − τ)-irreducible Hoffman graphs. In the terminology of Woo and Neumaier, we mean that every fat Hoffman graph with smallest eigenvalue at least −1−τ is anH-line graph, where H is the set of isomorphism classes of maximal fat (−1−τ)-...

متن کامل

On the limit points of the smallest eigenvalues of regular graphs

In this paper, we give infinitely many examples of (non-isomorphic) connected k-regular graphs with smallest eigenvalue in half open interval [−1− √ 2,−2) and also infinitely many examples of (non-isomorphic) connected k-regular graphs with smallest eigenvalue in half open interval [α1,−1− √ 2) where α1 is the smallest root(≈ −2.4812) of the polynomial x3 + 2x2 − 2x − 2. From these results, we ...

متن کامل

Ela on 3-colored Digraphs with Exactly One Nonsingular Cycle

The class of connected 3-colored digraphs containing exactly one nonsingular cycle is considered in this article. The main objective is to study the smallest Laplacian eigenvalue and the corresponding eigenvectors of such graphs. It is shown that the smallest Laplacian eigenvalue of such a graph can be realized as the algebraic connectivity (second smallest Laplacian eigenvalue) of a suitable u...

متن کامل

On colored digraphs with exactly one nonsingular cycle

The class of connected 3-colored digraphs containing exactly one nonsingular cycle is considered in this article. The main objective is to study the smallest Laplacian eigenvalue and the corresponding eigenvectors of such graphs. It is shown that the smallest Laplacian eigenvalue of such a graph can be realized as the algebraic connectivity (second smallest Laplacian eigenvalue) of a suitable u...

متن کامل

The smallest eigenvalues of Hamming graphs, Johnson graphs and other distance-regular graphs with classical parameters

We prove a conjecture by Van Dam & Sotirov on the smallest eigenvalue of (distance-j) Hamming graphs and a conjecture by Karloff on the smallest eigenvalue of (distance-j) Johnson graphs. More generally, we study the smallest eigenvalue and the second largest eigenvalue in absolute value of the graphs of the relations of classical P and Q-polynomial association schemes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 176  شماره 

صفحات  -

تاریخ انتشار 2014